next up previous contents
Next: 3.5 $B0BDj@-(B Up: 3.4 $B%(%M%k%.!<$NJ]B8B'$K$D$$$F(B Previous: 3.4.2.2 $B0J30$N;~$N?tCM2r@O(B

3.4.3 $B?tCM2r@O!J(BN$B$NCM$rJQ$($F!K(B

$B%(%M%k%.!<(B$ E_{j}$$B$O!"(B$ N$$B$NCM$H$I$s$J4X78$,$"$k$+(B, N$B$NCM$rJQ$($F$_$?$H$-$N%(%M%k%.!<(B$ E_{j}$$B$NJQ2=$r$^$H$a$?I=$G$"$k!#(B $B6-3&>r7o!"=i4|>r7o!"79$-!"8xHf$O>e$NI=$GMQ$$$?$b$N$r:NMQ$9$k!#(B

$B!J(Ba$B!K(B $ \lambda=1.0$$B$H$7$F(BN$B$NCM$rJQ$($F$_$?I=$G$"$k!#(B

\begin{displaymath}
\begin{array}{\vert c\vert c\vert}
\hline
N & $B%(%M%k%.!<(B \\ ...
...& 12.339473 \\
\hline
100000 & 12.338239\\
\hline
\end{array}\end{displaymath}



$ N$$B$NCM$,Bg$-$$$[$I!"%(%M%k%.!<$OK\Mh$NCM$K6a$E$/MM$K6a;w$7$F$$$k$N$G!"(B $B%(%M%k%.!<(B$ E_{j}$$B$O!"(B$ N$$B$NCM$,>.$5$$$HK\Mh$NCM$h$jBg$-$/$J$C$F$7$^$&!#(B

$B!J(Bb$B!K(B $ 0<\lambda<1$$B$N%5%s%W%k$H$7$F!"(B $ \lambda =0.5$$B$r:NMQ$7(B $ N$$B$NCM$rJQ$($?I=$G$"$k!#(B

\begin{displaymath}
\begin{array}{\vert c\vert c\vert c\vert c\vert c\vert}
\hli...
...018531 &\ \ 0.999979\ \ &\ \ $B#0$K<}B+(B\ \ \\
\hline
\end{array}\end{displaymath}


$ N$$B$,Bg$-$/$J$k$[$I!"8xHf$O(B$ 1$$B$K6a$E$/!#$=$N7k2L!"(B $ N=\infty$$B$H$9$l$P%(%M%k%.!<$NJ]B8B'$,@.$jN)$D$@$m$&!J7k2L$+$i$NM=A[!K!#(B $B$7$+$7!"?tCM2r@O$r9T$J$&;~$O(B$ N=\infty$$B$H $ h=\dsp\frac{1}{N}$$B$J$N$G!"(B$ N=\infty$$B$H$B$H$J$j!"J,Jl!a(B0$B$H$J$k<0$,$"$k$N$G

$B$b$C$H>\$7$/(B$ N$$B$H8xHf$N4X78$rD4$Y$k!#(B

\begin{displaymath}
\begin{array}{\vert c\vert c\vert c\vert}
\hline
N & $B8xHf(Ba &...
...
\ \ 1000\ \ &\ \ 0.958869\ \ & 0.041131 \\
\hline
\end{array}\end{displaymath}

$B8xHf(B$ a$$B$O!"$"$k;~9o(B$ t$$B$N%(%M%k%.!<(B$ E_{t}$$B$H!"(B $B$"$k;~9o(B$ t$ $B$+$i;~4V$r(B$ \tau$$B$:$DA}$d$7!"(B$ t+\tau$, $ t+2\tau$, $ \dots$, $ t+1$$B$K$J$C$?;~$N%(%M%k%.!<(B$ E_{t+1}$$B$NHf(B $ \dsp\frac{E_{t+1}}{E_{t}}$$B$NCM$G$"$k!#(B
$B8xHf(Ba$B$O!"

  $\displaystyle \mbox{$B8xHf(B$a$}$$\displaystyle =\left( \dsp\frac{E_{j+1}}{E_{j}}\right)^{\dsp\frac{1.0}{\tau}}$    


$B$3$NI=$r$b$H$K!" $ y=\log_{10}{(1.0-\mbox{$B8xHf(Ba})}$$B!"2#<4$K(B$ x=N$ $B$r(B $B$B!A(B$ N=300$$B$^$G$NE,Ev$JCM$b

$B?^(B 3.8: $ N$$B$,==J,Bg$-$$$HD>@~(B
\includegraphics[width=6cm]{figure/zu99.ps}

$ x=N=100$$B$K6a$$$H$3$m$O8m:9$H9M$($k$H!"(B $ N$$B$,==J,Bg$-$$$H$-!"$3$N%0%i%U$O!"$[$\D>@~$H$J$k!#(B $B79$-$O!"(B $ \dsp\frac{(-1.385835)-(-1.279268)}{1000 - 500}=-0.000213$
$B$h$j!"(B$ N$ $B$H8xHf(Ba$B$N4X78$O!"(B$ C$$B$rG$0UDj?t$H$7$F(B


  $\displaystyle \log_{10}(1.0-$$B8xHf(Ba$\displaystyle )$ $\displaystyle =$ $\displaystyle -0.000213 N + C$
  $\displaystyle (1.0-$$B8xHf(Ba$\displaystyle )$ $\displaystyle =$ $\displaystyle 10^{-0.000213 N + C}$
  $B8xHf(Ba $\displaystyle =$ $\displaystyle C'$B!&(B10^{-0.000213 N} +1.0\qquad ( C'=-10^{C},$   $\displaystyle \mbox{$N$$B$,Bg$-$$$H$3$m(B}$$\displaystyle )$

$ N=1000$ $B$N;~!"8xHf(Ba=$ 0.958869$$B$h$j(B


  $\displaystyle 0.958869$ $\displaystyle =$ $\displaystyle C'$B!&(B10^{-0.213} +1.0$
  $\displaystyle C'$B!&(B10^{-0.213}$ $\displaystyle =$ $\displaystyle -0.041131$
  $\displaystyle C'$ $\displaystyle =$ $\displaystyle -0.041131 $B!&(B 10^{ 0.213}$
  $\displaystyle C'$ $\displaystyle =$ $\displaystyle -0.06716906$

$B$f$($K!"(B


  $B8xHf(Ba $\displaystyle =$ $\displaystyle -0.06716906$B!&(B10^{-0.000213 N} +1.0$

$B

$B!J(Bc$B!K(B$ \lambda>1$$B$N%5%s%W%k$H$7$F!"(B $ \lambda =1.01$$B$r:NMQ$7(B $ N$$B$NCM$rJQ$($?I=$G$"$k!#(B

\begin{displaymath}
\begin{array}{\vert c\vert c\vert c\vert c\vert c\vert}
\hli...
...549850 &\ \ 1.020083\ \ & \infty $B$KH/;6(B \\
\hline
\end{array}\end{displaymath}



$ N$$B$,>.$5$$$[$I!"8xHf$O(B$ 1$$B$K6a$E$/!#$=$N7k2L!"(B $ N=0$$B$H$9$l$P%(%M%k%.!<$NJ]B8B'$,@.$jN)$D$@$m$&!J7k2L$+$i$NM=A[!K!#(B $ N=0$$B$G$O!"J,3d$r$7$J$$$N$G:9J,J}Dx<0$9$i:n$l$:A4$/0UL#$,$J$$!#(B

next up previous contents
Next: 3.5 $B0BDj@-(B Up: 3.4 $B%(%M%k%.!<$NJ]B8B'$K$D$$$F(B Previous: 3.4.2.2 $B0J30$N;~$N?tCM2r@O(B
Masashi Katsurada
$BJ?@.(B14$BG/(B11$B7n(B29$BF|(B