定理 7.11 (これで全部という訳でもないけれど)

以下 X は全体集合であり、A, B, C は X の部分集合とする。

- ① $A \subset A$ (反射律), $A \subset B \land B \subset C \Rightarrow A \subset C$ (推移律), $A \subset B \land B \subset A \Rightarrow A = B$ (反対称律)
- ② $A \cap A = A$, $A \cup A = A$ (冪等律)
- ③ $A \cap B = B \cap A$, $A \cup B = B \cup A$ (交換律)
- ④ $(A \cap B) \cap C = A \cap (B \cap C), (A \cup B) \cup C = A \cup (B \cup C)$ (結合律)
- ② $(A \cup B) \cap C = (A \cap C) \cup (B \cap C), (A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ (分配律)
- ③ $(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}, (A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}$ (ド・モルガン律)
- \bigcirc $A \cap B = A \Leftrightarrow A \subset B, A \cup B = B \Leftrightarrow A \subset B$

高校では、集合に関する命題は、ヴェン図 (Venn diagram) を描いて考えた。前のスライドに載せた命題が正しいことは、ヴェン図を描けば「わかる」であろう。

この講義では、考えるときにヴェン図を参考にするかもしれないけれど、ヴェン図を使った説明は証明にはならない、というスタンスで進める。 (無限個の要素からなる集合族については、ヴェン図も正確には描きようがないし、実は4つの集合くらいから、一般的な状況を図で表現することが難しくなる。)

以下の定義が議論の基礎となる。

- ② $A = B \stackrel{\text{def.}}{\Leftrightarrow} \forall x ((x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A))$ $\Leftrightarrow (\forall x (x \in A \Rightarrow x \in B)) \land (\forall x (x \in B \Rightarrow x \in A))$ この条件は $A \subset B \land B \subset A$ と書ける。
- ③ $A \cup B$, $A \cap B$, $A \setminus B$, A^{\complement} , $A \times B$, 2^{A} , $\bigcup_{n \in \mathbb{N}} A_{n}$, $\bigcap_{n \in \mathbb{N}} A_{n}$ などの定義

量称記号∀を含む命題の証明になる、ことに注意しよう。

桂田 祐史

3.12 集合についての定理, それらの証明 包含関係の証明

例 7.12

集合 A, B, C が $A \subset B$, $B \subset C$ を満たすとき、 $A \subset C$ が成り立つことを示せ。 (証明) $A \subset B$, $B \subset C$ を仮定する。

x を A の任意の要素とする。 $A \subset B$ であるから $x \in B$. $B \subset C$ であるから $x \in C$. ゆえに $A \subset C$.

例 7.13

集合 A, B, C, D が $A \subset B$, $C \subset D$ を満たすとき、 $A \times C \subset B \times D$ が成り立つことを証明せよ。

(証明) $A \subset B$, $C \subset D$ を仮定する。

x を $A \times C$ の任意の要素とすると、ある $a \in A$, $c \in C$ が存在して x = (a, c).

 $A \subset B$ であるから、 $a \in B$. $C \subset D$ であるから $c \in D$. ゆえに

 $x = (a, c) \in B \times D$. 従って $A \times C \subset B \times D$.

3.12 集合についての定理, それらの証明 包含関係の証明

問 集合 A, B が $A \subset B$ を満たすとき、 $B^{\complement} \subset A^{\complement}$ が成り立つことを証明 せよ。

解答 $A \subset B$ を仮定する。

x を $B^{\mathbb{C}}$ の任意の要素とすると、 $x \notin B$. このとき実は $x \notin A$ である。 もしもそうでないとすると、 $x \in A$. 仮定 $A \subset B$ より $x \in B$. これは矛盾であるので、 $x \notin A$. すなわち $x \in A^{\mathbb{C}}$. 以上より $B^{\mathbb{C}} \subset A^{\mathbb{C}}$.

別解

$$A \subset B \Leftrightarrow \forall x (x \in A \Rightarrow x \in B)$$
$$\Leftrightarrow \forall x (\neg (x \in B) \Rightarrow \neg (x \in A))$$
$$\Leftrightarrow \forall x (x \in B^{\complement} \Rightarrow x \in A^{\complement})$$
$$\Leftrightarrow B^{\complement} \subset A^{\complement}$$

3.12 集合についての定理, それらの証明 等式の証明

分配律
$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
 の証明
任意の x に対して
 $x \in (A \cup B) \cap C \Leftrightarrow (x \in A \cup B) \land x \in C$
 $\Leftrightarrow (x \in A \land x \in C) \lor (x \in B \land x \in C)$ $((p \lor q) \land r \equiv (p \land r) \lor (q \land r))$
 $\Leftrightarrow (x \in A \cap C) \lor (x \in B \cap C)$
 $\Leftrightarrow x \in (A \cap C) \cup (B \cap C)$
が成り立つから、 $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.

「・モルガン律 $(A \cup B)^{\mathbb{C}} = A^{\mathbb{C}} \cap B^{\mathbb{C}}$ の証明
任意の x に対して
 $x \in (A \cup B)^{\mathbb{C}} \Leftrightarrow \neg (x \in A \cup B)$
 $\Leftrightarrow \neg (x \in A \lor x \in B)$
 $\Leftrightarrow (\neg (x \in A)) \land (\neg (x \in B))$ $(\neg (p \lor q) \equiv \neg p \land \neg q))$
 $\Leftrightarrow (x \in A^{\mathbb{C}}) \land (x \in B^{\mathbb{C}})$
 $\Leftrightarrow x \in A^{\mathbb{C}} \cap B^{\mathbb{C}}$

空集合であることの証明は、知らないと戸惑いそうなので、一つ例をあ げておく。

 $A \cap A^{\complement} = \emptyset$ を示せ。

証明1 背理法を用いて証明する。 $A \cap A^{\mathbb{C}} \neq \emptyset$ と仮定すると、ある x が存在して $x \in A \cap A^{\mathbb{C}}$. ゆえに $x \in A$ かつ $x \in A^{\mathbb{C}}$. すなわち $x \in A$ かつ $x \notin A$. これは矛盾である。ゆえに $A \cap A^{\mathbb{C}} = \emptyset$.

証明2 (本質的には同じことであるが)

$$A \cap A^{\complement} = \left\{ x \mid x \in A \land x \in A^{\complement} \right\} = \left\{ x \mid x \in A \land x \notin A \right\}.$$

任意の x に対して $x \in A \land x \notin A$ は偽である。言い換えると、条件 $x \in A \land x \notin A$ を満たす x は存在しない。ゆえに $A \cap A^{\complement} = \emptyset$.

 $A \cap B = A \Leftrightarrow A \subset B$ を証明しよう。

準備として、一般に

 $(\sharp) X \cap Y \subset X$

が成り立つことを注意する (上の定理に入ってない)。実際、 $X \cap Y$ の任意の要素 x に対して、 $x \in X$ かつ $x \in Y$ であるから、特に $x \in X$. ゆえに $X \cap Y \subset X$.

 $A \cap B = A \Rightarrow A \subset B$ の証明

 $A \cap B = A$ と仮定する。(\sharp) より $A \cap B \subset B$ が成り立つので (X = B, Y = A とする)、 $A \subset B$.

 $A \cap B = A \Leftarrow A \subset B$ の証明

- (#) により、 $A \cap B \subset A$ が成り立つ (X = A, Y = B とする)。
- ① $A \subset B$ と仮定すると、 $A \subset A \cap B$ (実際、 $x \in A$ とするとき、仮定から $x \in B$ が成り立つので、 $x \in A \land x \in B$, すなわち $x \in A \cap B$ が成り立つ。).
- (i), (ii) から $A \cap B = A$ が成り立つ。