数学解析	宿題 N	o. 2	(2021年4月19日出題, 24日18:00 までに Oh-o! Meiji に PDF 形式で提出)
年 刹	1番	氏名_	(解答は裏面も使用可, A4 レポート用紙に書いても可)

問2

- (1) $B \subset \mathbb{R}$ であり、また $J, K \in \mathbb{R}$ とする。
 - (a) J が B の上限であるための条件を記せ。 (b) K が B の下限であるための条件を記せ。
- (2) $A = (4,19] = \{x \in \mathbb{R} \mid 4 < x \le 19\}$ とするとき、以下の問に答えよ。
 - (a) A の上限を求め、上限である根拠を述べよ。(b) A の下限を求め、下限である根拠を述べよ。
- (3) $B \subset \mathbb{R}$, $B \neq \emptyset$, B は下に有界とする。 $A := \{x \in \mathbb{R} \mid -x \in B\}$ とおく。このとき以下の問に答えよ。
 - (a) A が上に有界であることを示せ。 (b) $A \neq \emptyset$ であることを示せ。
 - (c) A の上限を S とすると、-S は B の下限であることを示せ。

問2解説

- (1) (a) 次の (i), (ii) を満たすこと。 (i) $(\forall x \in B) \ x \leq J$. (ii) $(\forall \varepsilon > 0) \ (\exists x \in B) \ J \varepsilon < x$.
 - (b) 次の (I), (II) を満たすこと。 (I) $(\forall x \in B) \ x \ge K$. (II) $(\forall \varepsilon > 0) \ (\exists x \in B) \ K + \varepsilon > x$.
- (2) (a) 19 が A の上限である。

証明 A は 19 を最大値に持つ。(: M=19 とおく。(ア) A の任意の要素 x は $4 < x \le 19$ を満たすので、 $x \le M$. (イ) $4 < M \le 19$ であるから $M \in A$. 以上(ア), (イ) から、M は A の最大値である。) 一般に「最大値は上限である」から、19 は A の上限である。 \blacksquare

別証明 J = 19 とおく。(i) A の任意の要素 x は $4 < x \le 19$ を満たすので、 $x \le J$.

- (ii) 任意の正の数 ε に対して、x := 19 とおくと、 $4 < x \le 19$ であるから $x \in A$. または $J \varepsilon < x$. 以上 (i) と (ii) から、J は A の上限である。 \blacksquare
- (b) 4 が A の下限である。

証明 I=4 とおく。(I) A の任意の要素 x は $4 < x \le 19$ を満たすので、 $x \ge I$.(II)任意の正の数 ε に対して、 $x:=\min\{4+\varepsilon/2,19\}$ とおくと、 $4 < x \le 19$ であるから、 $x \in A$. また $I+\varepsilon > x$. 以上 (I) と(II)から、I は A の下限である。 \blacksquare

- (注) 宿題答案によくあった間違いは、(2) (a) で $x = \max\{4, J \varepsilon/2\}$ とするもの。 ε が大きいとき x = 4 となり、 $x \in A$ を満たさない。 $x = \max\{5, J \varepsilon/2\}$ とすれば大丈夫だが、よく考えてみると ε が何であっても、x = J で条件が満たされる (「最大値は上限」という定理の証明のエッセンスである)。
- (3) (a) B が下に有界であるから、ある実数 L が存在して

 $(\forall b \in B) \quad b \ge L.$

任意の $a \in A$ に対して、 $-a \in B$ であるから $-a \ge L$. ゆえに $a \le -L$. ゆえに -L は A の上界 であり、A は上に有界である。

- (b) $B \neq \emptyset$ であるから、ある $b \in B$ が存在する。a := -b とおくと、 $-a = -(-b) = b \in B$ であるから、 $a \in A$. ゆえに $A \neq \emptyset$.
- (c) (a) により A は上に有界で、(b) により $A \neq \emptyset$ であるから、Weierstrass の上限公理によって、A の上限が存在する。それを S と書くと、次の (i) と (ii) が成り立つ。
 - (i) $(\forall a \in A) \ a \leq S$.
 - (ii) $(\forall \varepsilon > 0)(\exists a \in A) S \varepsilon < a$.

これから

- (I) 任意の $b \in B$ に対して、a := -b とおくと、 $-a = -(-b) = b \in B$ であるから、 $a \in A$. A の上限は S であるから、 $a \le S$. すなわち $-b \le S$. ゆえに $b \ge -S$.
- (II) 任意の正の数 ε に対して、ある $a\in A$ が存在して $S-\varepsilon< a$. ゆえに $-S+\varepsilon>-a$. b:=-a とおくと、 $a\in A$ と A の定義から、 $b=-a\in B$. また $-S+\varepsilon>b$. ゆえに -S は B の下限である。 \blacksquare
- (注) 宿題答案で多かったのは、(a, b obs) 二つのものを用意せず、1 obs で書こうとして、 $(\forall (-x) \in A)$ … のような無理な式を書いたケース (x lok 存しているように見える -x が任意とはどういうことだろう。そもそも x が任意ということ?意味がはっきりしない。)。 \forall や \exists の後には、名前 (普通は文字1 obs x' や x_0 とか) が続く。-x のような名前でない式は続かない。他にも x を x で置き換えると」のような無理なことを書いた人が多い。授業中に見せた模範解答では、x と x という文字を使いましたが、分かりやすいように x のという文字を用いるように書き直しました。