2016年度桂田研究室卒業レポート

S. J. Chapman "Drums That Sound the Same"の数値解析

明治大学 総合数理学部 現象数理学科
 伊谷 峻
 指導教員 桂田 祐史 准教授
 2017年 2月 15日

・目次

- 1 Introduction
- 2 Drums That Sound the Same の論文紹介
 - 2.1 Chapman の主張
 - 2.2 PAPER FOLDING
 - 2.3 $\tilde{u} = 0$ on ∂T の証明
 - 2.4 $-\Delta \tilde{u} = \lambda \tilde{u}$ in T の証明
- 3 数值実験
 - 3.1 FreeFem++のプログラム
 - 3.2 実行結果
 - 3.3 参考文献

1 Introduction

1966年、Mark Kac は

" Can One Hear the Shape of a Drum?" [参考文献 1]

を発表した。そこで Kac は、タイトルにもあるように、ドラムの形は聴き分け られるかと問いた。

形が違う2つのドラムでも、固有値が同じであるならば同じ音を出すのではないか、ということである。

1991 年、C. Gordon と D. Webb が面積と周長は等しいが形は違う、けれども 同じ音を持つ 2 次元・3 次元の図形のペアを探し出した。([3])

つまり、Kacの問いは否定的に解決された。

これを受け、1995 年、S. J. Chapman は

"Drums That Sound the Same" ([2])

で、現在知られている、違う形で同じ音を出す最も単純な 2 次元図形を発表した。

本卒業研究は、Mark Kac の問いに対する S. J. Chapman の論文で記された二 つのドラムが本当に同じ音を出すのか、FreeFem++というソフトを用いて数値 実験を行うこと、[2]には書かれていない初等的な証明を試みることに目的を置 いた。

2 Drums That Sound the Same の論文紹介

本章では、Chapman の論文[2]の内容をまとめると共に、次章での数値解析の 前準備をする。

2.1 Chapman の主張

Kac が問うた「ドラムの形を聞くことができるか」は、ドラムの振動する周波 数が分かればその形を判別できるか、ということである。ドラムの振動を数学的 には次の式で表すことが出来る。u が膜 D の基準位置からの変位である場合、 u は、

$$\Delta u = rac{\partial^2 u}{\partial t^2}$$
, in D,
u=0, on ∂ D
初期条件

を満たす。

解u(x,y,t)は次のような式で表せる。

$$u(x, y, t) = \sum_{j=1}^{\infty} A_j \varphi_j(x, y) \sin\left(2\pi \sqrt{\lambda_j} t + \alpha_j\right)$$
 (A_j, α_j は初期条件で定まる。)

ただし、 λ_i, α_i は次の固有値問題の解である。

$$\begin{cases} -\Delta u = \lambda u \text{ in } D\\ u = 0 \text{ on } \partial D \end{cases}$$

この固有値問題において、2 つの領域が、同じ固有値を持つ図形、つまり Chapman が示したものが以下の図 1(左:S 右:T とする)である。

また、S を 7 個の三角形(A~G)に分割し、裏面には表面と対応するように $\bar{A}\sim\bar{G}$ とする。

SとSの裏返し

2.2 PAPER FOLDING

Chapman は、S と T が同じ音を出す証明として折り紙操作を行った。 図 1 の S と同じ形をした紙 3 枚を考える。

・折り紙操作

Sの形の紙3枚を用いて、Tの形をしたものを作る。Sの形の紙3枚をそれぞれⅠ,Ⅱ,Ⅲと名付ける。そこで、Iの折り紙を、図2のように折り込みⅠ'を作る。

図 2(※参考文献[2])

次に、IIの折り紙を裏返し、図3のように折り込みII'を作る。

最後に、Ⅲの折り紙を裏返し、図4のように折り込みⅢ'を作る。

III

図 4(※参考文献 2)

こうして出来た I '~III'を、 I 'の A が II 'の \overline{F} 、 III'の \overline{D} と一致するように 3 枚を 重ねる。すると、図 5 のように、図 1 で記した T と同じ形になる。

 $\tilde{x} \in \Xi$ 角形①とするとき、それに対応する点 $x_{A,}x_{B}, x_{G}$ を三角形 A,B,G 上に取る。 この $x_{A,}x_{B}, x_{G}$ を用いて、 $\tilde{u}(\tilde{x}) = u(x_{A}) - u(x_{B}) - u(x_{G})$ で定める。

以上で説明した①における \hat{u} の定め方を図 5 の①のように $A - \bar{B} - \bar{G}$ 図示する。 同様にして②~⑦における \hat{u} の値を定める。

こうして定義した \tilde{u} : $T \rightarrow \mathbb{R}$ とすると、

$$\begin{cases} -\Delta \tilde{u} = \lambda \tilde{u} \text{ in } T\\ \tilde{u} = 0 \text{ on } \partial T \end{cases}$$

を満たし、λに属する固有関数となる。

2.3 $\tilde{u} = 0$ on ∂T の証明

図5に描かれている三角形①に限定して証明する。②~⑦も同様にして証明出 来る。

 ①において青い線で描かれている辺上にある 点をxとする。

 $x_{A,}x_{B}, x_{G} \in \partial S$ なので、

$$u(x_A) = u(x_B) = u(x_G) = 0$$
$$\& \neg \checkmark, \ \tilde{u}(\tilde{x}) = 0 - 0 - 0 = 0$$

 ①において赤い線で描かれている辺上にある 点を*x*とする。

$$\begin{aligned} x_A &= x_B \& \emptyset, \ u(x_A) = u(x_B) \\ x_G &\in \partial S \& \emptyset, \ u(x_G) = 0 \\ \& &\supset \zeta, \ \tilde{u}(\tilde{x}) = u(x_A) - u(x_B) - u(x_G) = 0 \end{aligned}$$

$2.4 - \Delta \tilde{u} = \lambda \tilde{u}$ in T の証明

Δは平行移動、回転、裏返しなどの直交変換で不変であるから、各小三角形①~ ⑦の内部で $-\Delta \tilde{u} = \lambda \tilde{u}$ を満たすことがわかる。

残る問題は、T の内部のうち、2 つの三角形の境界にある点xにおいて、 - $\Delta \tilde{u}(x) = \lambda \tilde{u}(t)$ が成り立つことの証明である。それは次の 2 つの補題を用いて 証明出来る。参考文献[3]では、楕円型微分方程式の解の正則性定理や環のスペ クトルなどを用いて証明している。今回、[4]を参照しながら初等的な証明を試 みた。

Lemma1

図のように隣り合った三角形 P,Q に対して、 $-\Delta u = \lambda u \text{ in } (P \cup Q \text{ op} n \pi)$ が成り立っていれば、 $-\Delta \tilde{u} = \lambda \tilde{u} \text{ in } (P \cup Q \text{ op} n \pi)$ となる。

関数が P と Q の境界でC²級

こちらでも**戸**と**፬**の境界でC²級

この Lemma を図 5 において、

(P,Q)=(A,B)(B,C),(C,D),(E,F),(G,E) として適用する。

(証明)

 $\bar{P} \cup \bar{Q}$ における \tilde{u} のグラフは元々の図形 S におけるuのグラフを裏返しにしたものである。

ゆえに、 $-\Delta \tilde{u} = \lambda \tilde{u}$ が成り立つ。

Lemma2

三角形 P の内部で $u \ \mathrm{d} C^2$ 級で、 $-\Delta u = \lambda u$ とする。また、1 つの辺 s で固有 関数 u=0 とする。

 $P \ge \overline{P} = \overline$

$$\tilde{u}(x) = \begin{cases} u(x) & (x \in P) \\ u(\bar{x}) & (x \in \bar{P}) \end{cases}$$

と定めるとき \tilde{u} は $P \cup \bar{P}$ で C^2 級で $-\Delta \tilde{u} = \lambda \tilde{u}$ in $(P \cup \bar{P})$ この Lemma を図 5 において、

 $(P, \overline{P}) = (A, \overline{A}), (C, \overline{C}), (F, \overline{F}), (G, \overline{G})$ として適用する。

(証明)

 $\begin{aligned} & -\Delta u = \lambda u \ln P \\ u = 0 \text{ on } s \to u(0, y) = 0 \quad (0 \le y \le 1) \end{aligned}$ を満たす。 このとき、P U s で u は C²級になることを認めて 議論する。 $\tilde{u}: P \cup \bar{P} \to \mathbb{R}$ は $\tilde{u}(x, y) = \begin{bmatrix} u(x, y) & (x \ge 0) \\ -u(-x, y) & (x \le 0) \end{bmatrix}$ と表せる。x = 0 のとき u(0, y) = 0であるから矛盾は生じない。 すると、 $-1 \le y \le 1$ で

$$u(0, y) = 0,$$

 $u_y(0, y) = 0,$
 $u_{yy}(0, y) = 0$

である。

$$\tilde{u}(+0,y) = \lim_{x \to 0, x > 0} \tilde{u}(x,y) = \lim_{x \to 0, x > 0} u(x,y) = u(0,y) = 0$$
$$\tilde{u}(-0,y) = \lim_{x \to 0, x < 0} \tilde{u}(x,y) = \lim_{x \to 0, x < 0} -u(-x,y) = -u(0,y) = 0$$
これより、 *ũ*は s で連続である。

また、

$$\widetilde{u_x}(x,y) = \begin{cases} u_x(x,y) & (x>0) \\ u_x(-x,y) & (x<0) \end{cases}, \ \widetilde{u_{xx}}(x,y) = \begin{cases} u_{xx}(x,y) & (x>0) \\ -u_{xx}(-x,y) & (x<0) \end{cases}$$

なので、

$$\widetilde{u_x}(+0) = \lim_{x \to 0, x > 0} u_x(x) = u_x(0)$$

$$\widetilde{u_x}(-0) = \lim_{x \to 0, x < 0} u_x(-x) = u_x(0)$$

 $\widetilde{u_x}(+0)$ と $\widetilde{u_x}(-0)$ が一致するので、 \widetilde{u} は 0 で微分可能で $\widetilde{u_x}$ は s で連続である。 $\widetilde{u_{xx}}(+0,y) = \lim_{x \to 0, x > 0} u_{xx}(x,y) = u_{xx}(0,y) = \lambda u(0,y) - u_{yy}(0,y) = 0$

$$\widetilde{u_{xx}}(-0,y) = \lim_{x \to 0, x < 0} u_{xx}(x,y) = \lim_{x \to 0, x < 0} -u_{xx} \quad (-x,y) = -u_{xx}(0,y)$$

$$= -\lambda u(0, y) - u_{yy}(0, y) = 0$$

 $\widehat{u_{xx}}(+0,y) \ge \widehat{u_{xx}}(-0,y)$ が一致するので、 $\widehat{u_x}$ は0で微分可能で $\widehat{u_{xx}}$ はsで連続である。

また、

$$\lim_{\substack{(x,y)\to(0,y)\\x>0}} \widetilde{u_{xy}}(x,y) = \lim_{\substack{(x,y)\to(0,y)\\x>0}} u_{xy}(x,y) = u_{xy}(0,y)$$

$$\lim_{\substack{(x,y)\to(0,y)\\x<0}} \widetilde{u_{xy}}(x,y) = \lim_{\substack{(x,y)\to(0,y)\\x<0}} u_{xy}(-x,y) = u_{xy}(0,y)$$

ゆえに $\widetilde{u_{xy}}$ は(0,y)で連続。 $\widetilde{u_{yx}}$ についても同様。 よって、これらより $P \ge \overline{P}$ はsで C^2 級であることがわかった。 Lemma1,Lemma2 より、図形 S と T の固有値は等しいことが証明された。

3 数值実験

3.1 FreeFem++のプログラム

FreeFem++とはパリ第6大学 J. L. Lions 研究所が開発した有限要素解析ツー ルである。

FreeFem++によって、固体・流体での問題、生物モデルなどに現れる反応拡 散系まで、様々な偏微分方程式境界値問題を有限要素法で解き、数値実験を行 うことができる。FreeFem++では、ユーザーが指定した2次元領域に対して自 動的に三角形要素分割を生成し、前述した弱形式により記述された問題に対し て、弱解を求め、可視化することが可能である。

本卒業研究で用いた方程式の弱形式は、

$$\iint_{\Omega} (u_x v_x + u_y v_y) \, dx \, dy = \lambda \iint_{\Omega} uv \, dx \, dy$$

である。この弱形式は FreeFem++でプログラミングする際に用いられる。

//Sの固有値を n ごとに求めるプログラム

int n=80: border a0 $(t = 0, 1) \{ x = t/2.0; y = t/2.0; \}$ border a1 $(t = 0, 1) \{ x = 1/2.0 * t + 1/2.0; y = 1/2.0 - 1/2.0 * t; \}$ border a2 $(t = 0, 1) \{ x = 1; y = t; \}$ border a3 $(t = 0, 1) \{ x = 1 - 1/2 \cdot 0^* t; y = 1 + 1/2 \cdot 0^* t; \}$ border a4 $(t = 0, 1) \{ x = 1/2.0 + 1/2.0^*t; y = 3/2.0 + 1/2.0^*t; \}$ border a5 $(t = 0, 1) \{ x = 1 - 1/2.0^*t; y = 2 + 1/2.0^*t; \}$ border a6 $(t = 0, 1) \{ x = 1/2.0 - 1/2.0 * t; y = 5/2.0 - 1/2.0 * t; \}$ border a7 $(t = 0, 1) \{ x = 0; y = 2-2^*t; \}$ mesh Th =buildmesh(a0(n)+a1(n)+a2(n)+a3(n)+a4(n)+a5(n)+a6(n)+a7(2*n));savemesh(Th,"S for change.msh"); plot(Th,wait=1); real Tmax=100; fespace Vh(Th, P1); Vh u1,u2; real sigma = 0; real [int]levels = -3.0:1.0:3.0; varf op(u1,u2) = int2d(Th)(dx(u1)*dx(u2) + dy(u1)*dy(u2) - sigma*u1*u2) + on(a0,a1,a2,a3,a4,a5,a6,a7,u1=0);varf b([u1],[u2]) = int2d(Th)(u1*u2); matrix OP= op(Vh,Vh,solver=Crout,factorize=1); matrix B= b(Vh,Vh,solver=CG,eps=1e-20); int nev=40;

//Tの固有値をnごとに求めるプログラム

```
int n=80:
border a0 (t = 0, 1) \{ x = t; y = 0; \}
border a1 (t = 0, 1) \{ x = 1 - t/2.0; y = t/2.0; \}
border a2 (t = 0, 1) \{ x = 1/2.0 + t; y = 1/2.0 + t; \}
border a3 (t = 0, 1) \{ x = 3/2.0 - t/2.0; y = 3/2.0 + t/2.0; \}
border a4 (t = 0, 1) \{ x = 1-t; y = 2; \}
border a5 (t = 0, 1) \{ x = t/2.0; y = 2-t/2.0; \}
border a6 (t = 0, 1) \{ x = 1/2.0 - t/2.0; y = 3/2.0 - t/2.0; \}
border a7 (t = 0, 1) \{ x = 0; y = 1-t; \}
mesh Th =
buildmesh(a0(n)+a1(n)+a2(2*n)+a3(n)+a4(n)+a5(n)+a6(n)+a7(2*n));
savemesh(Th,"T for change.msh");
plot(Th,wait=1);
real Tmax=100;
fespace Vh(Th, P1);
Vh u1,u2;
real sigma = 0;
real [int] levels = -3.0:1.0:3.0;
varf op(u1,u2) = int2d(Th)(dx(u1)*dx(u2) + dy(u1)*dy(u2) - sigma*u1*u2)
               + on(a0,a1,a2,a3,a4,a5,a6,a7,u1=0);
varf b([u1],[u2]) = int2d(Th)(u1*u2);
matrix OP= op(Vh,Vh,solver=Crout,factorize=1);
matrix B= b(Vh,Vh,solver=CG,eps=1e-20);
int nev=40;
```

3.2 実行結果 その1

SとTでそれぞれ求まった固有値の誤差の推定を、Mathematicaを用いて対数 グラフ化した。これにより、SとTの固有値の誤差のを小さい方から 20 個視覚 化した。*S*_{0,1,...,19}, *T*_{0,1,...,19}とは、試行回数 20 回での n=10,20,40,80,160,320,640 の 時のそれぞれの固有値の誤差の推定である。

横軸は n の対数、縦軸は固有値の誤差の推定を表している。

以下 Mathematica のソースコード

```
\begin{aligned} &\text{data1} = \{\{10, 0.2766\}, \{20, 0.0807\}, \{40, 0.0269\}, \{80, 0.0086\}, \{160, 0.003\}, \{320, 0.0011\}\} \\ &\text{data2} = \{\{10, 0.2116\}, \{20, 0.0783\}, \{40, 0.0251\}, \{80, 0.0082\}, \{160, 0.0029\}, \{320, 0.0012\}\} \\ &\text{ListLogLogPlot[} \{\text{data1}, \text{data2}\}, \text{Joined} \rightarrow \text{True}, \text{PlotLegends} \rightarrow \{\text{S0}, \text{T0}\} ] \\ &\text{data3} = \{\{10, 0.3971\}, \{20, 0.1193\}, \{40, 0.0349\}, \{80, 0.0107\}, \{160, 0.0034\}, \{320, 0.0012\}\} \\ &\text{data4} = \{\{10, 0.3465\}, \{20, 0.11\}, \{40, 0.0324\}, \{80, 0.0105\}, \{160, 0.0037\}, \{320, 0.0011\}\} \\ &\text{ListLogLogPlot[} \{\text{data3}, \text{data4}\}, \text{Joined} \rightarrow \text{True}, \text{PlotLegends} \rightarrow \{\text{S1}, \text{T1}\}, \text{PlotMarkers} \rightarrow \text{Automatic]} \\ &\text{data5} = \{\{10, 0.9486\}, \{20, 0.2537\}, \{40, 0.0751\}, \{80, 0.0225\}, \{160, 0.0073\}, \{320, 0.0025\}\} \end{aligned}
```

data6 = {{10, 0.6969}, {20, 0.2147}, {40, 0.0642}, {80, 0.0212}, {160, 0.0073}, {320, 0.0022}} ListLogLogPlot[{data5, data6}, Joined -> True, PlotLegends -> {S2, T2}, PlotMarkers -> Automatic] $data7 = \{\{10, 1.0543\}, \{20, 0.2699\}, \{40, 0.0717\}, \{80, 0.0188\}, \{160, 0.0051\}, \{320, 0.0014\}\}$ $data8 = \{\{10, 0.9095\}, \{20, 0.2402\}, \{40, 0.0623\}, \{80, 0.0168\}, \{160, 0.0045\}, \{320, 0.0013\}\}$ ListLogLogPlot[{data7, data8}, Joined -> True, PlotLegends -> {S3, T3}, PlotMarkers -> Automatic] $data9 = \{\{10, 1.5556\}, \{20, 0.4068\}, \{40, 0.1131\}, \{80, 0.0314\}, \{160, 0.0095\}, \{320, 0.0031\}\}$ $data10 = \{\{10, 1.1717\}, \{20, 0.3581\}, \{40, 0.0984\}, \{80, 0.0283\}, \{160, 0.0088\}, \{320, 0.0029\}\}$ ListLogLogPlot[{data9, data10}, Joined -> True, PlotLegends -> {S4, T4}, PlotMarkers -> Automatic] data11 = { $\{10, 2.2458\}$, {20, 0.5535}, {40, 0.148}, {80, 0.038}, {160, 0.0103}, {320, 0.0029}} $data12 = \{\{10, 1.7225\}, \{20, 0.4604\}, \{40, 0.1216\}, \{80, 0.0322\}, \{160, 0.0088\}, \{320, 0.0025\}\}$ ListLogLogPlot[{data11, data12}, Joined -> True, PlotLegends -> {S5, T5}, PlotMarkers -> Automatic] data13 = {{10, 2.8568}, {20, 0.7539}, {40, 0.1899}, {80, 0.05}, {160, 0.0134}, {320, 0.0038}} $data14 = \{\{10, 2.2132\}, \{20, 0.6167\}, \{40, 0.1569\}, \{80, 0.0418\}, \{160, 0.0114\}, \{320, 0.0033\}\}$ ListLogLogPlot[{data13, data14}, Joined -> True, PlotLegends -> {S6, T6}, PlotMarkers -> Automatic] data15 = { $\{10, 2.8946\}$, {20, 0.7597}, {40, 0.1888}, {80, 0.047}, {160, 0.012}, {320, 0.0032}} data16 = {{10, 2.9285}, {20, 0.7375}, {40, 0.1841}, {80, 0.0468}, {160, 0.012}, {320, 0.0031}} ListLogLogPlot[{data15, data16}, Joined -> True, PlotLegends -> {S7, T7}, PlotMarkers -> Automatic] $data17 = \{\{10, 3.8959\}, \{20, 0.929\}, \{40, 0.2355\}, \{80, 0.0581\}, \{160, 0.0146\}, \{320, 0.0036\}\}$ data18 = {{10, 3.2192}, {20, 0.8017}, {40, 0.1999}, {80, 0.0495}, {160, 0.0125}, {320, 0.0031}} ListLogLogPlot[{data17, data18}, Joined -> True, PlotLegends -> {S8, T8}, PlotMarkers -> Automatic] data19 = { $\{10, 4.212\}, \{20, 1.142\}, \{40, 0.311\}, \{80, 0.083\}, \{160, 0.023\}, \{320, 0.007\}$ } data20 = {{10, 3.746}, {20, 1.003}, {40, 0.268}, {80, 0.073}, {160, 0.021}, {320, 0.007}} ListLogLogPlot[{data19, data20}, Joined -> True, PlotLegends -> {S9, T9}, PlotMarkers -> Automatic] $data21 = \{\{10, 5.341\}, \{20, 1.335\}, \{40, 0.342\}, \{80, 0.087\}, \{160, 0.023\}, \{320, 0.006\}\}$ $data22 = \{\{10, 4.577\}, \{20, 1.146\}, \{40, 0.295\}, \{80, 0.075\}, \{160, 0.02\}, \{320, 0.005\}\}$ ListLogLogPlot[{data21, data22}, Joined -> True, PlotLegends -> {S10, T10}, PlotMarkers -> Automatic] $data23 = \{\{10, 6.655\}, \{20, 1.734\}, \{40, 0.447\}, \{80, 0.121\}, \{160, 0.033\}, \{320, 0.011\}\}$ $data24 = \{\{10, 5.426\}, \{20, 1.466\}, \{40, 0.386\}, \{80, 0.105\}, \{160, 0.031\}, \{320, 0.009\}\}$ ListLogLogPlot[{data23, data24}, Joined -> True, PlotLegends -> {S11, T11}, PlotMarkers -> Automatic] data25 = {{10, 7.108}, {20, 1.866}, {40, 0.451}, {80, 0.11}, {160,0.029}, {320, 0.007}} data26 = {{10, 5.93}, {20, 1.434}, {40, 0.375}, {80, 0.091}, {160,0.023}, {320, 0.006}} ListLogLogPlot[{data25, data26}, Joined -> True, PlotLegends -> {S12, T12}, PlotMarkers -> Automatic]

17

data27 = {{10, 8.994}, {20, 2.035}, {40, 0.521}, {80, 0.132}, {160, 0.034}, {320, 0.009}} $data28 = \{\{10, 7.422\}, \{20, 1.838\}, \{40, 0.471\}, \{80, 0.117\}, \{160, 0.031\}, \{320, 0.008\}\}$ ListLogLogPlot[{data27, data28}, Joined -> True, PlotLegends -> {S13, T13}, PlotMarkers -> Automatic] $data29 = \{\{10, 9.382\}, \{20, 2.444\}, \{40, 0.651\}, \{80, 0.169\}, \{160, 0.048\}, \{320, 0.014\}\}$ data30 = {{10, 7.445}, {20, 1.993}, {40, 0.515}, {80, 0.145}, {160, 0.042}, {320, 0.011}} ListLogLogPlot[{data29, data30}, Joined -> True, PlotLegends -> {S14, T14}, PlotMarkers -> Automatic] data31 = {{10, 10.67}, {20, 2.795}, {40, 0.707}, {80, 0.177}, {160, 0.045}, {320, 0.012}} $data32 = \{\{10, 9.071\}, \{20, 2.28\}, \{40, 0.575\}, \{80, 0.147\}, \{160, 0.038\}, \{320, 0.009\}\}$ ListLogLogPlot[{data31, data32}, Joined -> True, PlotLegends -> {S15, T15}, PlotMarkers -> Automatic] data33 = {{10, 12.494}, {20, 3.124}, {40, 0.813}, {80, 0.213}, {160, 0.057}, {320, 0.017}} $data34 = \{\{10, 10.018\}, \{20, 2.659\}, \{40, 0.674\}, \{80, 0.183\}, \{160, 0.052\}, \{320, 0.014\}\}$ ListLogLogPlot[{data33, data34}, Joined -> True, PlotLegends -> {S16, T16}, PlotMarkers -> Automatic] data35 = {{10, 12.811}, {20, 3.273}, {40, 0.84}, {80, 0.216}, {160, 0.059}, {320, 0.017}} data36 = {{10, 9.897}, {20, 2.752}, {40, 0.702}, {80, 0.186}, {160, 0.051}, {320, 0.015}} ListLogLogPlot[{data35, data36}, Joined -> True, PlotLegends -> {S17, T17}, PlotMarkers -> Automatic] data37 = {{10, 13.281}, {20, 3.284}, {40, 0.828}, {80, 0.204}, {160, 0.052}, {320, 0.013}} data38 = {{10, 11.066}, {20, 2.859}, {40, 0.715}, {80, 0.181}, {160, 0.046}, {320, 0.012}} ListLogLogPlot[{data37, data38}, Joined -> True, PlotLegends -> {S18, T18}, PlotMarkers -> Automatic] data39 = {{10, 14.569}, {20, 3.369}, {40, 0.842}, {80, 0.209}, {160, 0.052}, {320, 0.014}} data40 = {{10, 13.082}, {20, 3.172}, {40, 0.836}, {80, 0.204}, {160, 0.051}, {320, 0.013}} ListLogLogPlot[{data39, data40}, Joined -> True, PlotLegends -> {S19, T19}, PlotMarkers -> Automatic]

S								
	n							
j 🔨		10	20	40	80	160	320	640
	0	20.7012	20.4246	20.3439	20.317	20.3084	20.3054	20.3043
	1	29.8115	29.4144	29.2951	29.2602	29.2495	29.2461	29.2449
	2	42.7158	41.7672	41.5135	41.4384	41.4159	41.4086	41.4061
	3	53.7223	52.668	52.3981	52.3264	52.3076	52.3025	52.3011
	4	60.1058	58.5502	58.1434	58.0303	57.9989	57.9894	57.9863
	5	76.6741	74.4283	73.8748	73.7268	73.6888	73.6785	73.6756
	6	88.6454	85.7886	85.0347	84.8448	84.7948	84.7814	84.7776
	7	96.2376	93.343	92.5833	92.3945	92.3475	92.3355	92.3323
	8	103.834	99.9381	99.0091	98.7736	98.7155	98.7009	98.6973
	9	110.211	105.999	104.857	104.546	104.463	104.44	104.433
	10	121.647	116.306	114.971	114.629	114.542	114.519	114.513
	11	135.976	129.321	127.587	127.14	127.019	126.986	126.975
	12	145.107	137.999	136.133	135.682	135.572	135.543	135.536
	13	153.049	144.055	142.02	141.499	141.367	141.333	141.324
	14	164.563	155.181	152.737	152.086	151.917	151.869	151.855
	15	181.469	170.799	168.004	167.297	167.12	167.075	167.063
	16	186.71	174.216	171.092	170.279	170.066	170.009	169.992
	17	195.086	182.275	179.002	178.162	177.946	177.887	177.87
	18	207.357	194.076	190.792	189.964	189.76	189.708	189.695
	19	214.893	200.324	196.955	196.113	195.904	195.852	195.838

Т								
\searrow	n							
j 🔨		10	20	40	80	160	320	640
	0	20.6315	20.4199	20.3416	20.3165	20.3083	20.3054	20.3042
	1	29.749	29.4025	29.2925	29.2601	29.2496	29.2459	29.2448
	2	42.4124	41.7155	41.5008	41.4366	41.4154	41.4081	41.4059
	3	53.5356	52.6261	52.3859	52.3236	52.3068	52.3023	52.301
	4	59.6544	58.4827	58.1246	58.0262	57.9979	57.9891	57.9862
	5	76.0235	74.301	73.8406	73.719	73.6868	73.678	73.6755
	6	87.8206	85.6074	84.9907	84.8338	84.792	84.7806	84.7773
	7	96.2443	93.3158	92.5783	92.3942	92.3474	92.3354	92.3323
	8	102.983	99.7638	98.9621	98.7622	98.7127	98.7002	98.6971
	9	109.55	105.804	104.801	104.533	104.46	104.439	104.432
1	0	120.631	116.054	114.908	114.613	114.538	114.518	114.513
1	1	134.398	128.972	127.506	127.12	127.015	126.984	126.975
1	2	143.395	137.465	136.031	135.656	135.565	135.542	135.536
1	3	151.211	143.789	141.951	141.48	141.363	141.332	141.324
1	4	162.006	154.561	152.568	152.053	151.908	151.866	151.855
1	5	179.183	170.112	167.832	167.257	167.11	167.072	167.063
1	6	183.591	173.573	170.914	170.24	170.057	170.005	169.991
-	17	191.472	181.575	178.823	178.121	177.935	177.884	177.869
1	8	204.573	193.507	190.648	189.933	189.752	189.706	189.694
1	9	213.196	200.114	196.942	196.106	195.902	195.851	195.838

今回行った数値解析では、n を 10,20,40,80,160,320,640 と倍にしていっ た。固有値の誤差をグラフ化した際、n を倍にして行ったことからグラフの傾 きが-2 となることを予想し、実際ほぼ-2 になっていることがわかった。また、 S と T の各 j 番目の固有値において、n が 2 倍になっても、最小で上から 2 桁、最大で 4~5 桁一致していることがわかった。

3.3 実行結果 その2

FreeFem++によって得られたSとTの固有値がどれほどの精度を持つかを調べる。

今回、数値解析した中でnが一番小さい値と大きい値で次の計算を行った。

i	S(n=10)	T(n=10)	$ S_j - T_j $
Č	20.7012	20.6315	0.003366955
1	29.8115	29.749	0.002096506
2	42.7158	42.4124	0.007102758
3	53.7223	53.5356	0.003475279
4	60.1058	59.6544	0.007510091
5	76.6741	76.0235	0.008485264
6	88.6454	87.8206	0.009304487
7	96.2376	96.2443	0.00006962
8	103.834	102.983	0.008195774
9	110.211	109.55	0.005997586
10	121.647	120.631	0.008352035
11	135.976	134.398	0.011604989
12	145.107	143.395	0.01179819
13	153.049	151.211	0.012009226
14	164.563	162.006	0.015538122
15	181.469	179.183	0.012597193
16	186.71	183.591	0.016705051
17	195.086	191.472	0.018525163
18	207.357	204.573	0.01342612
19	214.893	213.196	0.007896953

$\lambda_{j,S,n} - \lambda$	∙j,T,n
$\lambda_{j,S,n}$	

j	S(n=640)	T(n=640)	
0	20.3043	20.3042	0.00000493
1	29.2449	29.2448	0.00000342
2	41.4061	41.4059	0.00000483
3	52.3011	52.301	0.00000191
4	57.9863	57.9862	0.00000172
5	73.6756	73.6755	0.00000136
6	84.7776	84.7773	0.00000354
7	92.3323	92.3323	0
8	98.6973	98.6971	0.00000203
9	104.433	104.432	0.00000958
10	114.513	114.513	0
11	126.975	126.975	0
12	135.536	135.536	0
13	141.324	141.324	0
14	151.855	151.855	0
15	167.063	167.063	0
16	169.992	169.991	0.00000588
17	177.87	177.869	0.00000562
18	189.695	189.694	0.00000527
19	195.838	195.838	0

これより、領域SとTの固有値は、

n=10のとき 上から2桁

n=640のとき 上から6桁

それぞれ一致した。三角形分割の数を増やすほどに領域 S と T の固有値は近づ くことがわかった。

また、実行結果その 1,2 より領域 S と T はかなり近い音を出すことが推定され、S. J. Chapman の主張は正しいということが数値計算でほぼ確認された。

4 最後に

本卒業研究では、S.J. Chapman の主張が本当に正しいのか?ということを確か めるため数値解析を行い、初等的な証明を試みた。

領域SとTの固有値が残念ながらピタリと一致しなかったが、上から6桁という信頼出来る範囲で一致させることができた。また、数値解析では、Chapmanの主張が正しいとほぼ確かめられたが、幾何学的にSとTが同じ音を出すことの証明が必要である。

Lemma2 において、PUs でuは C^2 級になることを認める飛び道具を使っている。 $u_{xy}(0, y), u_{yx}(0, y)$ が一致することの証明の他の手段が思いつかなかったことが 本卒業研究での残された課題であり、心残りである。

5 参考文献

1.Kac, M., Can one hear the shape of a drum?,

The American Mathematical Monthly, Vol. 73, No. 4, 1-23(1966).

2. S. J. Chapman, Drums That Sound the Same,

The American Mathematical Monthly, Vol. 102, No. 2 (Feb. ,1995), 124-138 3. Gordon, C. , Webb, D. and Wolpert, S. , Isospectral plane domains and surfaces via Riemannian orbifolds, *Invent. Math.* , 110, 1-22 (1992).

4. 浦川 肇, ラプラシアンの幾何と有限要素法, 朝倉書店 (2009).